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Abstract 

An equation is deduced in this paper and an attempt is made to obtain the peak 
maxima information theoretically from the differential thermogravimetry curves. The 
calculations are critically assessed. The Kissinger method, which also deals with the peak 
maxima, is also discussed. A comparison of the equation due to Kissinger and that of the 
equation deduced in this paper shows that the Kissinger equation is a special case of this 
equation. The approximation made in the deduction of the Kissinger equation can be 
restated as “The extent of reaction at the peak maxima under different heating rates is the 
same.” 

INTRODUCTION 

There are basically two kinds of methods for evaluating kinetic para- 
meters in thermal analysis [l, 21. One is the single-heating-rate method 
and the other is the multi-heating-rate method. In both there are two 
routines which are most often used, namely the differential method and 
the integral method. 

There is however another method, which is due to Kissinger [3] and is 
based on the change in the position of the peak maxima with the heating 
rate being used. Although it was originally deduced for the data obtained 
from differential thermal analysis (DTA), the method allows the reaction 
rate and the reaction extent to be obtained from the thermogravimetry 
(TG). In general, it is difficult to locate the exact peak maxima positions 
and the reaction process is affected by the reaction environment [4]. 

In this paper, an equation which is based on premises similar to those 
used in the Kissinger equation is deduced. This equation is tested and its 
relation with the Kissinger equation is discussed. 
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THEORY 

In thermal analysis, the expression that shows the variation of reaction 
rate with temperature is 

daldt =f(a)k(T) (1) 

where cz is the extent of the reaction and f(a) is the function of (Y which 
represents the reaction mechanism. Table 1A shows a list of the most 
commonly used equations. k(T) is the rate constant at temperature T, 
which generally takes the Arrhenius equation form 

k(T) = A exp( -E/RT) (2) 

where A is the pre-exponential factor or frequency factor, E is the 
activation energy, R is the gas constant and T is the absolute temperature. 

TABLE 1A 

The common forms of f(a) 

Mechanism f(ff) 

Acceleratory u-t curve 
Pl Power law 

El Exponential law 

S-shaped a-t curve 
Al.5 Avrami-Erofeev 
A2 Avrami-Erofeev 
A3 Avrami-Erofeev 
A4 Avrami-Erofeev 
Bl Prout-Tompkins 

Deceleratory a-t curve 
R2 Contracting surface 
R3 Contracting volume 
Dl 1-D Diffusion 
D2 2-D Diffusion 
D3 3-D Diffusion 
D4 Ginstling-Brouns 
Fl First order 
F2 Second order 
F3 Third order 

4a314 

3a213 
2ff “2 
1 
(2/3)(~~“~ 
a 

lS(1 - cy)[-ln(1 - (Y)]I’~ 
2(1- cu)[-ln(1 - a)]‘” 
3(1- a)[-ln(1 - a)]‘” 
4(1- a)[-ln(1 -a)]“” 
a(1 -a) 
OS(1 - cu)[-ln(l- cr)]-’ 
(l/3)(1 - cy)[-ln(1 - a)]-’ 
(l/4)(1 - cy)[-ln(l - a)]-’ 

2( 1 - , )I’* 
3(1- (Yy3 
1/2cX 
-[ln(l - a)]-’ 
1.5[1 - (1 - cy)‘“]-‘(l - czy 
1.5[1 - (1 - (Yy-’ 

;1---z,* 
OS(1 - a)” 
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If eqn. (2) is combined with eqn. (1) and rearranged, then 

daldt = A exp(-E/RT)f(a) 

The second differential of eqn. (3) is 

111 

(3) 

d(daldt)/dr = Af(a)(EIRT)/3 exp(-EIRT) 

+ A exp(-ElRT)f’(cr)(dcu/dt) (4) 

where f’(a) is the derivative form of f(a). A list of f’(a) is shown in 
Table 1B. p is the Iinear heating rate and can be expressed as dT/dt. 

At the peak maxima, eqn. (4) should be equal to 0. Then eqn. (4) 
becomes 

Af(a)(E/RT2)j3 exp(-E/W) = -A exp(-EIRT)f’(cr)(daldt) (5) 
At this peak maximum position, eqn. (5) should hold and all the 

TABLE 1B 

The common forms of f’(a) 

Mechanism f’(a) 

Acceleratory a-t curve 
Pl 3a-li4 

“Cry,; 

0” 

El ;(1’3)n -3’2 

S-shaped wt curve 
Al.5 l.S[-ln(l - cr)]“3{1/3[-ln(l - a)}-’ - 1) 
A2 2[-ln(l - a)]‘“{l/2[-ln(1 - IX)]-’ - 1) 
A3 3[-ln(l- a)]“3{2/3[-ln(l -a)]-’ - 1) 
A4 4[-ln(l- cx)]3’4{3/4[-ln(l - a)]-’ - l} 
Bl l-2a 

O.S[-ln(1 - a)]-‘{-[-ln(1 - (Y)]-’ - l} 
(1/3)[-ln(l- a)]-2{-2[-ln(l - a)]-’ - 1) 
(1/4)[-ln(l- a)]-3{-3[-ln(l - CX)]^’ - 1) 

Deceleratory w-t curve 
R2 -(1- ,)-l/2 

R3 -2(1- Cxy 
Dl -l/(Zd) 
D2 -(l- a)-‘[ln(l- (Y)]-’ 
D3 lS[l - (1 - (u)“~]-‘{-1/3[1 - (1 - LY)“~]-’ - 2/3(1 - CX)-“~) 
D4 -OS(l - a)-2’3[1 - (1 - (ry-2 
Fl -1 
FQ -2(1- a) 
F3 -1.5(1 -a)’ 
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variables T, daldt and (Y are the values for those parameters at that point. 
After rearrangement, eqn. (5) can be expressed as 

f&,,)EPlRT2, = -f’(~Y,)(Wdf), (6) 

where T,, (daldt), and (Y, are the values of T, dculdt and (Y at this peak 
maximum. For a specific reaction., the activation energy can be calculated 
if the reaction mechanism is known and all the peak maximum informa- 
tion can be ascertained from the differential thermogravimetry (DTG) 
plot. In this paper all the reaction mechanisms in Table 1B are tested from 
the peak maximum information created by assuming a single partictdar 
mechanism. The frequency factor A for each mechanism can then be 
calculated by using eqn. (1) after the activation energy has been calcmated 
from eqn. (6). 

The Kissinger method also deals with the peak maximum position. The 
equation of the Kissinger method is 

ln(PIT2,) = C - E/RT, (7) 

By changing the heating rate, the peak temperatures can be found and 
from the linear regression of the ln@/T2,) vs. l/T, plot the activation 
energy and other regression parameters can be calculated. 

EXPERIMENTAL 

The data files for this paper were created by using a computer program 
which could create the data file for further calculations and the peak 
information file for this paper at the same time. This involved using a 
certain initial (Y value (Y~ (0, 0.05, 0.1, 0.15 and 0.2) for the reaction at the 
initial temperature To (300 K), the activation energy, the frequency factor, 
the heating rate (5, 10, 20 and 40”Cmin’), the interval of sampling 
At (0.01 second per point), and choosing one mechanism for that set of 
files. Equation (3) with T = To + Pt (t is the time of heating) and 
Q = a0 + (daldt) At can then be used to obtain the dcr/dt, T and (Y values 
for the calculation. The daldt values are compared in each step and the 
maximum value with the corresponding (Y and T values stored in the peak 
file for further calculation. 

The programs were run on QUICK BASIC software which provides a fast 
speed and is easy to edit. The figures were drawn by using QUATTRO 

software. The units of axes in the figures correspond to units which are the 
same as those from the available TG equipment. 

RESULTS AND DISCUSSION 

The reaction mechanisms A2 and R2 were chosen as examples. The 
kinetic parameters used in the calculation were as follows. The activation 
energy was taken as 200 kJ malll; the frequency factor as 1 X 10” s-‘; the 
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TABLE 2 

Peak maxima information for the A2 mechanism calculated from theoretical data using 
eqn. (3) a 

p (“C min-‘) Function Peak temp. T,(K) (Y, (dcY/dt), (1O-3 s-‘) 

5 A2 835.2 0.6203 2.313 
R2 816.3 0.7338 1.642 

10 A2 853.4 0.6201 4.278 
R2 833.7 0.7335 3.040 

20 A2 874.0 0.6198 8.321 
R2 853.4 0.7331 5.919 

40 A2 894.7 0.6196 15.76 
R2 873.2 0.7328 11.22 

a Theoretical parameters: E = 200 kJ mol-‘; A = 1 X 10” s-‘. 

heating rates chosen were 5, 10, 20 and 40”Cmin-‘. Table 2 shows peak 
maxima information for all the heating rates for the A2 and R2 
mechanisms. Figures 1 and 2 shows TG and DTG curves for the A2 and 
R2 mechanisms at a heating rate of 10°C min-’ respectively. 

Application of new equation 

The information in Table 2 was used in eqn. (6) and the activation 
energies and the frequency factors for all the reaction mechanisms were 
calculated. The results for the A2 and R2 mechanisms are listed in Tables 
3 and 4 respectively. From these data it should be noted that there are 

80. 
3 
--g 70- 

P 60- 

6 50- 

g 40- 
.P, 
ar 3 30- 

20- 

0, 
510 520 530 540 550 560 570 560 590 600 

Temperature(C) 

4 
51 

30 

25 

Fig. 1. Theoretical TG and DTG curves for the A2 mechanism at a heating rate of 
10°C min-‘. 
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R2 Mechanism Data 
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Fig. 2. Theoretical TG and DTG curves for the R2 mechanism at a heating rate of 
10°C min-‘. 

TABLE 3 

Results calculated for the A2 mechanism using eqn. (6) and the parameters indicated in 
Table 2 a 

p (“C min-‘) 

Parameter 5 10 20 40 

E (kJ mol-‘) 204.99 197.79 201.41 199.66 
A (10” ss’) 2.05 0.732 1.21 0.956 

a Theoretical parameters: E = 200 kJ mol-‘; A = 1 X 10” s-‘. 

TABLE 4 

Results calculated for the R2 mechanism using eqn. (6) and the parameters indicated in 
Table 2 a 

p (“C min-‘) 

Parameter 5 10 20 40 

E (kJ mol-‘) 205.10 197.73 201.44 
A (10” s-‘) 2.12 0.721 1.23 

a Theoretical parameters: E = 200 kJ molJ’; A = 1 X 10” SK’. 

199.63 
0.950 
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differences between the calculated activation energies and the theoretical 
value. Although the interval of sampling used in the peak maxima search 
program (0.01 second per point) is very very small, a smaller sampling 
interval might improve the analysis. However, the average value of all the 
calculated activation energies is very close to the theoretical value. This 
intrinsic problem is the main defect in the application of this method to 
real cases, for which the data is generally collected in a 3 seconds per 
point sampling interval. It should be noted that in the calculation of all the 
information of a curve (daldt, (Y and T) any error is amplified in each 
calculation step. This can be observed by inspection of the theoretical 
curves in Figs. 1 and 2, where small irregularities can be detected. 

The activation energies must then be used here to calculate the 
frequency factors, so any errors in activation energy are reflected in the 
calculation of the frequency factor. The presence of the experimental 
function in the calculation magnifies any error on going from the 
activation energy to the frequency factor. For example, in Table 3, for the 
sample with a heating rate of 5°C min-‘, the activation energy is 
204.99 kJ mall’, which is slightly larger than the theoretical value 
(200 kJ mol-‘) but the frequency factor A (2.05 X 10” s-l) is twice as large 
as the theoretical value (1 X lOlo s-l). 

The use of the new equation can be seen to produce an acceptable 
value for the activation energy, but some alternative method of identifying 
the mechanism is needed, and then any small error in the activation 
energy is magnified in the subsequent calculation of the frequency factor. 

Application of the Kissinger method 

The Kissinger method may also be programmed utilizing the above data 
files. The results of the calculation are shown in Table 5. The results show 
that the calculated activation energies for the A2 and R2 mechanisms are 
very close to the theoretical values. They are also closer than those 
calculated by the Ozawa method [5]. This shows the theoretical advantage 
of the Kissinger method over the Ozawa method. 

Although in the Kissinger method the results for A and E are good, the 
regression factors are not so good. The data comes from a theoretical 

TABLE 5 

Results from the Kissinger method using eqn. (7) a 

Mechanism 

A2 
R2 

E (kJ mol-‘) R 

201.55 0.99987 
201.69 0.99987 

Standard error 

0.0163 
0.0164 

a Theoretical parameters: E = 200 kJ mol-‘; A = 1 X 10”‘s~‘. 
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calculation, so the regression factors should be 1 instead of 0.99987 in 
Table 5. If once again the real case is considered, the difficulty in locating 
the values of (Y, and other parameters associated with the peak maxima 
will probably make the use of the Ozawa method give better results. 

Comparison of the generalized Kissinger equation 
and the Kissinger equation 

In the above discussion it would appear that the Kissinger method has 
advantages over the use of eqn. (6). The relation between the two 
equations should be discussed because the Kissinger equation is deduced 
from an approximation [6]. 

If eqn. (3) is substituted into eqn. (6), the result is 

PIT”, = -[AR~‘(cG,,)/E] exp(-E/RT,) 

Taking logarithms gives 

ln(PIT2,) =X - EIRT, (9) 

where X is ln[-ARf’(cr,)/E]. This may be compared with the Kissinger 
equation (eqn. (7)). 

It can be seen that the only difference between eqns. (7) and (9) is 
between the constant C in the eqn. (7) and the corresponding term 
X = ln[-ARf’(a,)/E] in eqn. (9). Because E, A and R are constant for a 
certain reaction, if there is no change in the value of (Y, while the heating 
rate p is changing, eqn. (9) is actually equivalent to eqn. (7). This means 
that the Kissinger equation is a “special” case of eqn. (9). 

When the peak maxima information in Table 2 is taken into account, 
the change of the (Y, values against the change of the heating rate is very 
small. Although the reason for this is beyond the scope of the present 
paper, the Kissinger method must be considered a very good approxima- 
tion. It should also be noted that in the Kissinger method, it is not 
necessary to know the reaction mechanism in order to find the activation 
energy. 

CONCLUSIONS 

By considering the peak maximum position and related parameters, 
eqn. (6) can be deduced based on the rate of the reaction, eqn. (1) and the 
Arrhenius equation (eqn. (2)). The real value of deriving this equation is 
that it can be developed in such a way that the Kissinger equation can be 
shown to be a special case of it. This places the Kissinger method on a 
firmer basis than’hitherto. 

The result shows that the Kissinger equation is a special case of the new 
equation; the latter takes the reaction extent at the peak maximum 



D. Chen et al./Thermochim. Acta 215 (1993) 109-117 117 

condition as a constant while the heating rate is changing. The advantages 
of the Kissinger method are that it is not necessary to know the reaction 
mechanism to calculate the activation energy and one needs only to locate 
the peak maximum temperature for the calculation. The main disadvan- 
tage of the Kissinger method is that it is dependent on the accuracy of the 
peak positiqn, which may be difficult to find in real reactions. 
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